LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

M.Sc. DEGREE EXAMINATION - MATHEMATICS

FIRST SEMESTER - APRIL 2014

MT 1902-MATHEMATICS FOR COMPUTER APPLICATIONS

Date : 07/04/2014
Dept. No. \square Max. : 100 Marks
Time : 09:00-12:00

Part A (Answer ALL questions)

$2 \times 10=20$

1. Define Lattice.
2. With usual notations prove that (i) $a * a=a$ (ii) $a * b=b * a$.
3. Define context free grammar.
4. What are the logic operators?
5. Let $\mathrm{G}=(\mathrm{N}, \mathrm{T}, \mathrm{P}, \mathrm{S})$, where $N=\{S\}, T=\{a\}, P:\{S \rightarrow S S, S \rightarrow a\}$. Check whether G is ambiguous or unambiguous.
6. Give a deterministic finite automata accepting the set of all strings over $\{0,1\}$ containing 3 consecutive 0 's.
7. State the Pigeon hole principle.
8. Define a bipartite graph with an example.
9. Prove that every cyclic group is abelian.
10. Define ring with an example.

Part B (Answer ALL questions)

11. (a) Prove that a bijective map of a lattice L into a lattice L^{\prime} is a lattice isomorphism if and only if its inverse is order preserving.
(or)
(b) Prove that the complement a^{\prime} of any element ' a ' of a Boolean algebra is uniquely determined. Prove also that the map $a \rightarrow a^{\prime}$ is an anti - automorphism of period ≤ 2 and $a \rightarrow a^{\prime}$ satisfies $(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime},(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}, a^{\prime \prime}=a$.
12. (a) Write a short note on principal conjunctive normal form and construct an equivalent formula

$$
\text { for }\rceil(\mathrm{P} \vee \mathrm{Q}) \rightleftarrows(\mathrm{P} \wedge \mathrm{Q})
$$

(or)
(b) For a grammar $G=(\{S, Z, A, B\},\{a, b\}, P, S)$ where P consists of the following production:

1. $S \rightarrow a S A$
2. $\mathrm{S} \rightarrow \mathrm{aZA}$
3. $\mathrm{Z} \rightarrow$ bZB
4. $\mathrm{Z} \rightarrow \mathrm{bB}$
5. $\mathrm{BA} \rightarrow \mathrm{AB}$
6. $\mathrm{AB} \rightarrow A \mathrm{~b}$
7. $\mathrm{bB} \rightarrow \mathrm{bb}$
8. $\mathrm{bA} \rightarrow \mathrm{ba}$
9. $\mathrm{aA} \rightarrow \mathrm{aa}$

Then show that $L(G)=\left\{a^{n} b^{m} a^{n} b^{m} / n, m \geq 1\right\}$.
13. (a) Let L be a set accepted by a nondeterministic finite automaton. Then prove that there exists a deterministic finite automaton that accepts L .
(or)
(b) Define a Regular Expression.
(c) Explain the equivalence of deterministic finite automata and regular expressions.
14. (a) Show that $(A-B) \cup(B-A)=(A \cup B)-(A \cap B)$.
(b) Prove that
(i) $A-B=A \cap B^{\prime}$.
(ii) $(A \cup B) \cup C=A \cup(B \cup C)$.
(or)
(c) If G is a group then show that
(i) for every $a \in G,\left(a^{-1}\right)^{-1}=a$
and (ii) for all $a, b \in G,(a b)^{-1}=b^{-1} a^{-1}$.
(d) Prove that $(a b)^{2}=a^{2} b^{2}$ for all a, b in a group G if and only if G is abelian.
15. (a) Prove that a subgroup N of a group G is a normal subgroup of G iff the product of two left cosets of N in G is again a left coset N in G .
(or)
(b) Prove that the following statements are equivalent for a connected graph G.
(i) G is Eulerian
(ii) Every point of G has even degree
(iii) The set of edges of G can be partitioned into cycles.

Part C (Answer ANY TWO questions)

$2 \times 20=40$
16. (a) Define a Non - Deterministic Finite automata.
(b) For the non deterministic finite automaton $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$,

give the transition table and show that 0100110 is in L (M).
(c) Let r be a regular expression. Then prove that there exists an NFA with \in-transitions that accepts L (r).
17. (a) Prove that every chain is a distributive lattice.
(b) State and prove pumping lemma.
(c) Prove that if $f: A \rightarrow B$ and $g: B \rightarrow C$ be one-to-one onto functions, then $g o f$ is also one-toone onto and $(g \circ f)^{-1}=f^{-1} O g^{-1}$.
18. (a) Let G be a (p, q) graph. Then prove that the following statements are equivalent
(i) G is a tree.
(ii) Every two points of G are joined by a unique path.
(iii) G is connected and $\mathrm{p}=\mathrm{q}+1$.
(iv) G is acyclic and $\mathrm{p}=\mathrm{q}+1$.
(b) State and prove Lagrange theorem.

